Problème Énoncé

Intégrales de Futuna

Notations:

Soit f est une application continue sur $[x_0, +\infty[$, à valeurs dans \mathbb{R}^+ .

On pose
$$\int_{x_0}^{+\infty} f(x) dx = \lim_{a \to +\infty} \int_{x_0}^{a} f(x) dx$$
, si cette limite existe dans \mathbb{R} .

Dans ce problème, il sera question d'intégrales de ce type, mais tous les calculs devront être effectués sur des intégrales sur un segment (le plus souvent [0, a] avec a > 0) avant un passage à la limite (qui devra être justifié) quand a tend vers $+\infty$.

Pour tout n de \mathbb{N}^* , on note $F_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(\operatorname{ch} x)^n}$ (si cette intégrale existe).

Les intégrales F_n sont appelées intégrales de Futuna.

- 1. (a) Prouver que F_1 existe, et calculer sa valeur.
 - (b) Prouver que F_2 existe, et calculer sa valeur.
 - (c) Montrer que tous les F_n $(n \ge 1)$ existent et que $F_{n+2} = \frac{n}{n+1} F_n$ pour tout n de \mathbb{N}^* .
- 2. (a) Montrer que la suite $(F_n)_{n\geqslant 1}$ est décroissante et convergente.
 - (b) Dans cette question, on va prouver que $\lim_{n\to\infty} F_n = 0$.

On se donne $\varepsilon > 0$, puis a, b dans $\mathbb{R}+*$, avec a < b.

On décompose
$$F_n$$
 sous la forme $F_n = \int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} + \int_a^b \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} + \int_b^{+\infty} \frac{\mathrm{d}x}{(\operatorname{ch}x)^n}$.

- i. Montrer que $F_n \leqslant a + \frac{b}{(\operatorname{ch} a)^n} + \frac{(2e^{-b})^n}{n}$.
- ii. Choisir a et b et en déduire : $\exists n_0 \in \mathbb{N}^*, \ \forall n \geqslant n_0, \ 0 \leqslant F_n \leqslant \varepsilon$. Conclure.
- 3. (a) Déduire de la question (1) l'expression de F_{2n} et de F_{2n+1} à l'aide de factorielles.
 - (b) Montrer que la suite $n \mapsto u_n = nF_nF_{n+1}$ est constante et calculer sa valeur.
 - (c) Montrer que $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = 1$, et en déduire que $F_n \sim \sqrt{\frac{\pi}{2n}}$.
- 4. Pour tout n de \mathbb{N} , on pose $W_n = \int_0^{\pi/2} (\cos x)^n dx$ (ce sont les intégrales de Wallis).

Pour tout n de \mathbb{N}^* , prouver l'égalité $F_n = W_{n-1}$.

Ce résultat explique l'analogie qu'on remarque entre les intégrales de Wallis et Futuna!

- 5. Appliquer la formule d'intégration approchée par la méthode du trapèze à $x\mapsto \ln x$ sur le segment [n,n+1] et en déduire l'inégalité $0\leqslant \left(n+\frac{1}{2}\right)(\ln(n+1)-\ln(n))-1\leqslant \frac{1}{12n^2}.$
- 6. Pour tout $n \ge 2$, on pose $u_n = \ln(n^n \sqrt{n} e^{-n}) \ln(n!)$ et $v_n = u_n + \frac{1}{12(n-1)}$.
 - (a) Montrer que les suites $(u_n)_{n\geqslant 2}$ et $(v_n)_{n\geqslant 2}$ sont adjacentes.
 - (b) On note $C = \lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n$. Montrer l'égalité $2u_n - u_{2n} = \ln\left(\frac{F_{2n+1}\sqrt{2n}}{\pi}\right)$ et en déduire $C = -\frac{1}{2}\ln(2\pi)$.
 - (c) Prouver finalement la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$.

Problème Corrigé

Corrigé

1. (a) Tout d'abord, l'application $x \mapsto \frac{1}{\operatorname{ch} x}$ est positive et continue sur \mathbb{R}^+ .

On calcule $\int_0^a \frac{\mathrm{d}x}{\mathrm{ch}\,x}$ (pour tout a>0) en utilisant le changement $u=\mathrm{e}^x$.

D'abord $du = e^x dx = u dx$ et $ch x = \frac{u^2 + 1}{2u}$.

On trouve: $\int_0^a \frac{\mathrm{d}x}{\mathrm{ch}\,x} = \int_1^{\mathrm{e}^a} \frac{2\,\mathrm{d}u}{u^2 + 1} = \left[2\arctan u\right]_1^{\mathrm{e}^a} = 2\left(\arctan(e^a) - \frac{\pi}{4}\right).$

Quand on fait tendre a vers $+\infty$, la limite existe (ce qui prouve l'existence de F_1), et :

$$F_1 = \lim_{a \to +\infty} 2\left(\arctan(e^a) - \frac{\pi}{4}\right) = 2\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{\pi}{2}.$$

(b) Tout d'abord, l'application $x \mapsto \frac{1}{\operatorname{ch} x}$ est positive et continue sur \mathbb{R}^+ .

Une primitive de $x \mapsto \frac{1}{(\operatorname{ch} x)^2}$ sur \mathbb{R} est l'application $x \mapsto \operatorname{th} x$.

Ainsi, pour tout a > 0, on trouve : $\int_0^a \frac{\mathrm{d}x}{(\operatorname{ch} x)^2} = \left[\operatorname{th} x \right]_0^a = \operatorname{th} a.$

Quand $a \to +\infty$, la limite (donc F_2) existe et $F_2 = \lim_{a \to +\infty} \operatorname{th} a = 1$.

(c) On procède par récurrence forte. On sait déjà que F_1 et F_2 existent.

On se donne $n \ge 1$, et on suppose que F_1, \ldots, F_{n+1} existent.

On a montrer l'existence de F_{n+2} . On se donne a > 0.

On intègre par parties $\int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^{n+2}} = \int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^2(\operatorname{ch}x)^n}$ en primitivant $\frac{1}{(\operatorname{ch}x)^2}$.

$$\int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^{n+2}} = \left[\frac{\operatorname{th}x}{(\operatorname{ch}x)^n}\right]_0^a + n \int_0^a \frac{(\operatorname{th}x)(\operatorname{sh}x)}{(\operatorname{ch}x)^{n+1}} \, \mathrm{d}x = \frac{\operatorname{th}a}{(\operatorname{ch}a)^n} + n \int_0^a \frac{(\operatorname{sh}x)^2}{(\operatorname{ch}x)^{n+2}} \, \mathrm{d}x$$

Ainsi
$$\int_0^a \frac{\mathrm{d}x}{(\operatorname{ch} x)^{n+2}} = \frac{\operatorname{th} a}{(\operatorname{ch} a)^n} + n \int_0^a \frac{(\operatorname{ch} x)^2 - 1}{(\operatorname{ch} x)^{n+2}} \, \mathrm{d}x.$$

On en déduit $\int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^{n+2}} = \frac{1}{n+1} \left(\frac{\operatorname{th}a}{(\operatorname{ch}a)^n} + n \int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} \right).$

Quand $a \to +\infty$, le membre droit de l'égalité tend vers $\frac{n}{n+1} \int_0^{+\infty} \frac{\mathrm{d}x}{(\operatorname{ch} x)^n} = \frac{n}{n+1} F_n$.

Cela prouve l'existence de F_{n+2} et l'égalité $F_{n+2} = \frac{n}{n+1} F_n$.

La suite $(F_n)_{n\geqslant 1}$ est donc entièrement définie et : $\forall n\geqslant 1, \ F_{n+2}=\frac{n}{n+1}F_n$.

2. (a) Pour tout $x \ge 0$ et tout n de \mathbb{N}^* , on a $1 \le \operatorname{ch} x$ donc $0 \le \frac{1}{(\operatorname{ch} x)^{n+1}} \le \frac{1}{(\operatorname{ch} x)^n}$.

Ainsi $0 \leqslant \int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^{n+1}} \leqslant \int_0^a \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} \ (a > 0) \ \operatorname{donc} \ 0 \leqslant F_{n+1} \leqslant F_n \ \operatorname{quand} \ a \to +\infty.$

La suite (F_n) est décroissante et minorée (par 0). Elle est donc convergente.

(b) i. Sur [0, a] on a ch $x \ge 1$ donc $\int_0^a \frac{\mathrm{d}x}{(\operatorname{ch} x)^n} \le \int_0^a \mathrm{d}x = a$.

Sur [a,b] on a ch $x \ge \operatorname{ch} a > 0$ donc $\int_a^b \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} \le \int_a^b \frac{\mathrm{d}x}{(\operatorname{ch}a)^n} = \frac{b-a}{(\operatorname{ch}a)^n} \le \frac{b}{(\operatorname{ch}a)^n}$.

Sur $[b, +\infty[$, on a ch $x = \frac{e^x + e^{-x}}{2} \ge \frac{e^x}{2}$ donc $\frac{1}{(\operatorname{ch} x)^n} \le 2^n e^{-nx}$.

Ainsi, pour tout
$$c > b$$
: $\int_b^c \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} \leqslant \int_b^c 2^n \mathrm{e}^{-nx} \, \mathrm{d}x = \frac{2^n}{n} \left[e^{-nb} - \mathrm{e}^{-nc} \right] \leqslant \frac{2^n}{n} \mathrm{e}^{-nb}$. Quand $c \to +\infty$, on trouve la majoration $\int_b^{+\infty} \frac{\mathrm{d}x}{(\operatorname{ch}x)^n} \leqslant \frac{(2\mathrm{e}^{-b})^n}{n}$. Finalement, on a obtenu la majoration : $\forall n \in \mathbb{N}^*, \ F_n \leqslant a + \frac{b}{(\operatorname{ch}a)^n} + \frac{(2\mathrm{e}^{-b})^n}{n}$.

- ii. On choisit $a=\frac{\varepsilon}{2}$ et $b=\ln 2$ (on se perd aucune généralité à supposer $\varepsilon<\ln 2$. La majoration précédente devient : $\forall\,n\in\mathbb{N}^*,\ F_n\leqslant\frac{\varepsilon}{2}+\frac{\ln 2}{(\operatorname{ch}(\varepsilon/2))^n}+\frac{1}{n}$. Le membre droit de cette inégalité tend vers $\frac{\varepsilon}{2}$ quand n tend vers $+\infty$. Ainsi, il existe n_0 dans \mathbb{N}^* tel que $0\leqslant F_n\leqslant \varepsilon$ pour $n\geqslant n_0$. Ce résultat signifie bien sûr que $\lim_{n\to+\infty}F_n=0$.
- 3. (a) Pour tout $n \ge 2$, $F_{2n} = \frac{2(n-1)}{2n-1} F_{2(n-1)} = \frac{2(n-1)}{(2n-1)} \frac{2(n-2)}{(2n-3)} \cdots \frac{4}{5} \frac{2}{3} F_2$. Or $F_2 = 1$.

 Donc $F_{2n} = \frac{2^{n-1}(n-1)!}{(2n-1)(2n-3)\cdots 1} = \frac{(2^{n-1}(n-1)!)^2}{(2n-1)!} = \frac{(2^n n!)^2}{2n \cdot (2n)!}$ (valable si n = 1).

 Pour tout $n \text{ de } \mathbb{N}^*$, $F_{2n+1} = \frac{2n-1}{2n} F_{2(n-1)+1} = \frac{2n-1}{2n} \frac{(2n-3)}{2(n-1)} \cdots \frac{3}{4} \frac{1}{2} F_1$. Or $F_1 = \frac{\pi}{2}$.

 Ainsi $F_{2n+1} = \frac{(2n-1)(2n-3)\cdots 1}{2^n n!} \frac{\pi}{2} = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$ (valable si n = 0).
 - (b) En utilisant la relation donnant F_{n+2} en fonction de F_n , on obtient, pour $n\geqslant 1$: $u_{n+1}=(n+1)F_{n+1}F_{n+2}=(n+1)F_{n+1}\Big(\frac{n}{n+1}\,F_n\Big)=nF_nF_{n+1}=u_n.$ Ainsi la suite $(u_n)_{n\geqslant 1}$ est constante. Pour tout n de \mathbb{N}^* , $u_n=u_1=F_1F_2=\frac{\pi}{2}$.
 - (c) Pour tout n de \mathbb{N}^* , on a : $0 < F_{n+2} \leqslant F_{n+1} \leqslant F_n$ et donc $0 < \frac{F_{n+2}}{F_n} \leqslant \frac{F_{n+1}}{F_n} \leqslant 1$. Or $\lim_{n \to \infty} \frac{F_{n+2}}{F_n} = \lim_{n \to \infty} \frac{n}{n+1} = 1$. On en déduit $\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = 1$. Ainsi $F_{n+1} \sim F_n$ donc $\frac{\pi}{2} = nF_nF_{n+1} \sim nF_n^2$. Il en résulte $F_n \sim \sqrt{\frac{\pi}{2n}}$.
- 4. On se donne n dans \mathbb{N}^* . On effectue le changement de variable $t = \tan\left(\frac{x}{2}\right)$ dans W_{n-1} . On a $\mathrm{d}t = \frac{1}{2}(1+t^2)\,\mathrm{d}x$ donc $\mathrm{d}x = \frac{2\,\mathrm{d}t}{1+t^2}$. De plus $\cos x = \frac{1-t^2}{1+t^2}$. Quand x décrit $\left[0,\frac{\pi}{2}\right]$, t décrit $\left[0,1\right]$. Ainsi $W_{n-1} = \int_0^{\pi/2} (\cos x)^{n-1}\,\mathrm{d}x = 2\int_0^1 \frac{(1-t^2)^{n-1}}{(1+t^2)^n}\,\mathrm{d}t$. On effectue le changement de variable $t = \mathrm{th}\left(\frac{x}{2}\right)\,\mathrm{dans}\,F_n$. On a $\mathrm{d}t = \frac{1}{2}(1-t^2)\,\mathrm{d}x$ donc $\mathrm{d}x = \frac{2\,\mathrm{d}t}{1-t^2}$, et on sait que $\mathrm{ch}\,x = \frac{1+t^2}{1-t^2}$. Quand x décrit $\left[0,a\right]$, t décrit $\left[0,\mathrm{th}\,(a/2)\right]$. Ainsi $\int_0^a \frac{\mathrm{d}x}{(\mathrm{ch}\,x)^n} = 2\int_0^{\mathrm{th}\,(a/2)} \frac{(1-t^2)^{n-1}}{(1+t^2)^n}\,\mathrm{d}t$. Quand $a \to +\infty$, on obtient $F_n = 2\int_0^1 \frac{(1-t^2)^{n-1}}{(1+t^2)^n}\,\mathrm{d}t = W_{n-1}$.

Problème Corrigé

5. La formule d'intégration approchée s'écrit $\int_{n}^{n+1} \ln x \, dx \approx \frac{\ln n + \ln(n+1)}{2}$.

L'application $x\mapsto \ln x$ étant concave, l'approximation est ici obtenue par défaut.

On sait qu'un majorant de l'erreur commise est $\frac{1}{12} \sup_{[n,n+1]} |\ln''(x)| = \frac{1}{12} \sup_{[n,n+1]} \frac{1}{x^2} = \frac{1}{12n^2}$.

Ainsi
$$0 \le \int_{n}^{n+1} \ln x \, dx - \frac{\ln n + \ln(n+1)}{2} \le \frac{1}{12n^2}.$$

Mais
$$\int_{n}^{n+1} \ln x \, dx = \left[x \ln x - x \right]_{n}^{n+1} = (n+1) \ln(n+1) - n \ln n - 1.$$

Il en découle
$$\int_{n}^{n+1} \ln x \, dx - \frac{\ln n + \ln(n+1)}{2} = \left(n + \frac{1}{2}\right) (\ln(n+1) - \ln(n)) - 1.$$

On a donc obtenu l'encadrement $0 \le \left(n + \frac{1}{2}\right)(\ln(n+1) - \ln(n)) - 1 \le \frac{1}{12n^2}$.

6. (a) Pour tout $n \ge 2$:

$$u_{n+1} - u_n = \ln\left((n+1)^{n+1}\sqrt{n+1}e^{-n-1}\right) - \ln((n+1)!) - \ln\left(n^n\sqrt{n}e^{-n}\right) + \ln(n!)$$

$$= \left(n + \frac{3}{2}\right)\ln(n+1) - (n+1) - \ln(n+1) - \left(n + \frac{1}{2}\right)\ln n + n$$

$$= \left(n + \frac{1}{2}\right)(\ln(n+1) - \ln(n)) - 1$$

La question précédente donne donc $0 \le u_{n+1} - u_n \le \frac{1}{12n^2}$ pour tout $n \ge 2$.

En particulier, la suite $(u_n)_{n\geqslant}$ est croissante. D'autre part, pour tout $n\geqslant 2$:

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{12n} - \frac{1}{12(n-1)} = u_{n+1} - u_n - \frac{1}{12n(n-1)}.$$

Ainsi
$$v_{n+1} - v_n \leq \frac{1}{12n^2} - \frac{1}{12n(n-1)} < 0$$
. La suite $(v_n)_{n \geq 0}$ est donc décroissante.

Enfin, il est clair que
$$\lim_{n\to\infty} (v_n - u_n) = \lim_{n\to\infty} \frac{1}{12(n-1)} = 0.$$

Les deux suites $(u_n)_{n\geqslant 2}$ et $(v_n)_{n\geqslant 2}$ sont donc adjacentes.

(b) On trouve successivement:

$$2u_n - u_{2n} = 2\ln\left(n^n\sqrt{n}\,e^{-n}\right) - 2\ln(n!) - \ln\left((2n)^{2n}\sqrt{2n}\,e^{-2n}\right) + \ln((2n)!)$$

$$= \ln\left(n^{2n+1}\,e^{-2n}\right) - \ln\left((2n)^{2n}\sqrt{2n}\,e^{-2n}\right) + \ln((2n)!) - 2\ln(n!)$$

$$= \ln n - \ln\left(2^{2n}\sqrt{2n}\right) + \ln((2n)!) - 2\ln(n!) = \ln\left(\frac{(2n)!\sqrt{n}}{2^{2n}(n!)^2\sqrt{2}}\right)$$

Or
$$F_{2n+1} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$
 donc $2u_n - u_{2n} = \ln\left(\frac{F_{2n+1}\sqrt{2n}}{\pi}\right)$

On a
$$F_{2n+1} \sim \sqrt{\frac{\pi}{4n}}$$
 donc $\lim_{n \to \infty} \frac{F_{2n+1}\sqrt{2n}}{\pi} = \frac{1}{\sqrt{2\pi}}$ donc $\lim_{n \to \infty} (2u_n - u_{2n}) = -\frac{1}{2}\ln(2\pi)$.

Mais bien sûr
$$\lim_{n\to\infty} (2u_n - u_{2n}) = 2\lim_{n\to\infty} u_n - \lim_{n\to\infty} u_{2n} = 2C - C = C$$
.

On obtient finalement $C = -\frac{1}{2}\ln(2\pi)$.

(c) On sait maintenant que $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \left(\ln \left(n^n \sqrt{n} e^{-n} \right) - \ln(n!) \right) = \ln \frac{1}{\sqrt{2\pi}}$.

Autrement dit
$$\lim_{n\to\infty} \frac{n^n \sqrt{n} e^{-n}}{n!} = \frac{1}{\sqrt{2\pi}} \operatorname{donc} \lim_{n\to\infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1.$$

On a donc obtenu la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$.