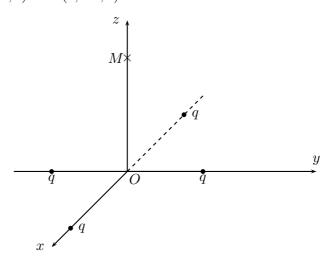
Deuxième partie

Champs et Potentiels Électriques

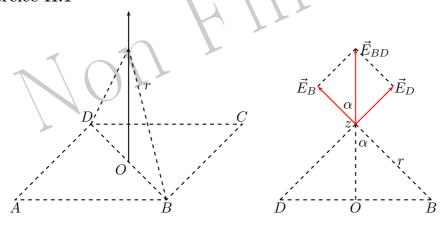
Exercice II.1

On place des charges électriques ponctuelles identiques de valeur q aux points : A(a,0,0), B(0,a,0), C(-a,0,0) et D(0,-a,0).



- 1- Calculer le champ électrique créé par ces charges en un point M quelconque sur l'axe Oz, tel que OM = z.
- 2- Calculer le potentiel créé en ce point.
- 3- Que deviennent ces expressions si on met des charges +q en A et C et -q en B et D?

Solution Exercice II.1



1- La distance séparant chaque charge de O est OA = OB = OC = OD = a, donc $r = \sqrt{a^2 + z^2}$, voir figure. Les charge B et D créent donc le même champ (en module) $E_B = E_D = Kq/r^2$. Le champ total est parallèle

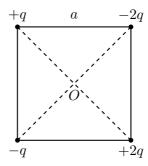
à OZ à cause de la symétrie : $\vec{E}_{BD} = 2E_B\cos{(\alpha)}\vec{k}$ où $\cos{(\alpha)} = z/r$. Les charges A et C créent le champ $\vec{E}_{AC} = 2E_A\cos{(\alpha)}\vec{k}$. Le champ total est $\vec{E}(z) = \vec{E}_{AC} + \vec{E}_{BD} = 4kqz\left(a^2 + z^2\right)^{-3/2}\vec{k}$.

2-
$$V(z) = 4Kq/r = 4Kq/\sqrt{a^2 + z^2}$$

3- $\vec{E}_{AC} = -\vec{E}_{BD}$. Le champ total est donc nul. De même V(z) = 0.

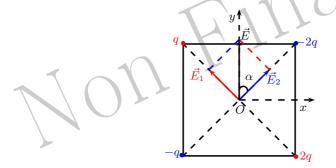
Exercice II.2

Déterminer le vecteur champ électrique \vec{E}_0 et le potentiel V_0 , au centre O du carré de côté a (voir figure). A.N. : a=3cm et $q=10^{-11}$ C.



Solution Exercice II.2

Données : $K = 9 \times 10^9 SI$, $a = 3 \times 10^{-2} m$, $q = 10^{-11} C$.

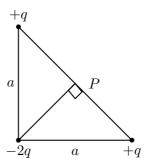


Le champ électrique :

Les charges (+2q) et (+q) donnent un champ total \vec{E}_1 au point O égal à celui donné par une seule charge (+q) située à la place de (+2q). Il en est de même pour les charges (-2q) et (-q) qui créent \vec{E}_2 . On a donc deux charges (+q) et (-q) distantes de a et on calcule le champ au point 0 situé sur la médiane à une distance $r=a/\sqrt{2}$. En considérant un système de référence Oxy et un angle $\alpha=\pi/4$ entre la médiane et les diagonales du carré, on peut facilement voir que $E=2E_1\cos\alpha$ car E est la diagonale d'un losange de côté $E_1=E_2=2Kq/a^2$. Par conséquent, $\vec{E}=2E_1\cos\alpha\vec{j}=2\sqrt{2}\frac{K}{a^2}q\vec{j}=282.84\vec{j}$ en V/m. Le potentiel est nul en $O,V=\sqrt{2}Kq/a-\sqrt{2}Kq/a+2\sqrt{2}Kq/a-2\sqrt{2}Kq/a=0$.

Exercice II.3

Déterminer le vecteur champ électrique \vec{E}_P et le potentiel V_P au point P (voir figure). A.N. : a=6 cm et $q=-2\,10^{-11}$ C.



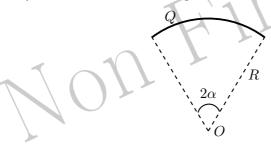
Solution Exercice II.3

Données : $a = 6 \times 10^{-2} m$, $q = -2 \cdot 10^{-11} C$.

Le champ est égal à celui créé par (-2q) et vaut $E=4Kq/a^2=200\frac{V}{m}$ car $r=a/\sqrt{2}$. Il fuit (-2q) et le potentiel est nul.

Exercice II.4

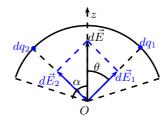
Un arc de cercle de rayon R et d'ouverture 2α porte une charge Q uniformément répartie.



- 1. Quel est le champ électrostatique créé en son centre O?
- 2. Quel est le potentiel au point O?

Solution Exercice II.4

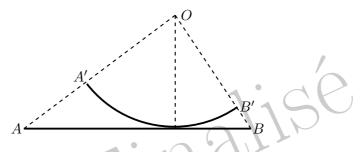
- 1. Le champ est parallèle à la bissectrice de l'angle (2α) que l'on choisit comme étant l'axe Oz. Deux charges élémentaires $dq_1 = dq_2 = dq$ symétriques par rapport à Oz avec un angle θ , créent un champ $d\vec{E} = 2K \left(dq/R^2\right)\cos\left(\theta\right)\vec{k}$ avec $dq = \lambda Rd\theta$. Le champ total est $\vec{E} = \int_0^\alpha d\vec{E} = 2\int_0^\alpha K \left(\lambda Rd\theta/R^2\right)\cos\left(\theta\right)\vec{k} = 2K \left(\lambda/R\right)\sin\left(\alpha\right)\vec{k}$.
- 2. Le potentiel est $V = \int_0^{\alpha} 2K dq/R = 2\alpha K\lambda$.



Exercice II.5

Un segment de droite AB porte une charge totale Q uniformément répartie.

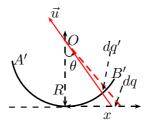
Montrer que le champ, créé au point O, est le même que celui que créerait un arc de cercle portant la même densité de charge, tangent à AB, centré sur O et vu de O sous le même angle que le segment AB.



Solution Exercice II.5

Soit un point x quelconque sur AB portant la charge $dq = \lambda dx$. Il lui correspond un point portant la charge $dq' = \lambda R d\theta$ sur l'arc A'B' de rayon R.

La charge dq crée le champ $d\vec{E} = K\frac{\lambda dx}{r^2}\vec{u}$ (où r est la distance entre x et O). La charge dq' crée le champ $d\vec{E}' = K\frac{\lambda R d\theta}{R^2}\vec{u}$. Or $x = R\tan{(\theta)}$ donc $dx = \frac{R}{\cos^2{\theta}}d\theta$ et comme $\cos{\theta} = R/r$ alors $dx = \frac{r^2}{R}d\theta$. Ce qui donne $d\vec{E} = d\vec{E}' = K\frac{\lambda d\theta}{R}\vec{u}$. Par conséquent, $\vec{E} = \int_{\theta_A}^{\theta_B} K\frac{\lambda d\theta}{R}\vec{u}$ et $\vec{E}' = \int_{\theta_{A'}}^{\theta_{B'}} K\frac{\lambda d\theta}{R}\vec{u}$. Comme les angles vérifient $\theta_A = \theta_{A'}$ et $\theta_B = \theta_{B'}$, on trouve $\vec{E} = \vec{E}'$.



Remarques:

- $-\vec{u} = -\sin{(\theta)}\vec{i} + \cos{(\theta)}\vec{j} \text{ dépend de } \theta. \text{ L'intégrale donne } \vec{E'} = \frac{K}{R}\lambda\left(-\cos{\theta'_A} + \cos{\theta'_B}\right)\vec{i} + \frac{K}{R}\lambda\left(\sin{\theta'_B} \sin{\theta'_A}\right)\vec{j}.$
- L'exercice II.4 est un cas particulier du II.5 avec $\theta_A' = -\alpha$ et $\theta_B' = +\alpha$ de sorte que $\vec{E}' = 2\frac{K}{R}\lambda\left(\sin\alpha\right)\vec{j}$.

 $-x = r \sin(\theta)$ n'implique pas que $dx = r \cos(\theta) d\theta$ car r varie avec θ (il n'est pas constant).

Exercice II.6

Choisissez la réponse a ou b et justifiez.

- Une ligne de champ est une ligne où le vecteur champ est :
 a- perpendiculaire à cette ligne.
 b- Tangent à cette ligne.
- 2. Une ligne de champ est orientée dans le sens des potentiels : a- croissants. b- décroissants.
- 3. Une surface équipotentielle est une surface où le potentiel reste :

 a- constamment nul en tout point de cette surface.

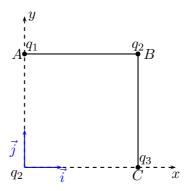
 b- constant en tout point de cette surface.
- 4. Une ligne de champ est une ligne :
 a- de forme linéaire.
 b- de forme telle qu'elle traverse perpendiculairement les surfaces équipotentielles.
- 5. Un champ électrostatique uniforme est caractérisé par :
 a- des lignes de champ parallèles.
 b- des surfaces équipotentielles planes, parallèles et équidistantes.

Solution Exercice II.6

Pour chaque question, la réponse (b) est la bonne. Pour les justifications, voir les définitions et démonstrations du cours.

Exercice II.7

Soient trois charges q_1 , q_2 et q_3 placées respectivement aux points A(0,a), B(a,a) et C(a,0) du plan xOy.



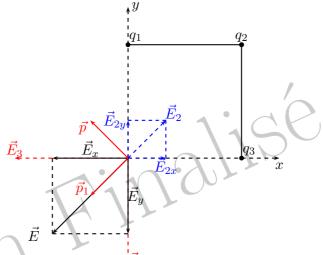
- 1. Calculer le potentiel électrique total au point O(0,0).
- 2. Calculer les composantes E_x et E_y du champ électrique au point O.

- 3. En déduire le champ électrique total au point O. Représenter le vecteur . Échelle : $1cm \rightarrow 200V/m$.
- 4. On place au point O un dipôle électrique de moment dipolaire $\vec{p} = 10^{-10} (-\vec{i} + \vec{j})$ Cm.
 - a) Déterminer le moment $\vec{\tau}$ du couple appliqué au dipôle.
 - b) Représenter le dipôle dans sa position d'équilibre stable finale. Justifier cet état.
 - c) Calculer la variation d'énergie potentielle du dipôle lorsqu'il passe de sa position initiale à sa position finale.

$$q_1 = q_3 = +q = 10^{-9} \,\mathrm{C}, \, q_2 = -q, \, a = 10 \,\mathrm{cm}.$$

Solution Exercice II.7

Distance $OB = \sqrt{2}a$. Angle $(\widehat{OC}, \widehat{OB}) = \alpha = \pi/4$.



1)
$$V(O) = V_1 + V_2 + V_3 = V_3 = -(2 - 1/\sqrt{2}) Kq/a$$
.

2)
$$E_x = E_3 + E_{2x} = -Kq/a^2 + (Kq/2a^2)\cos(\pi/4) = -(1 - 1/\sqrt{8})Kq/a^2$$
. Notez que $E_x < 0$.

$$E_y = E_1 + E_{2y} = -Kq/a^2 + (Kq/2a^2)\sin(\pi/4) = -(1 - 1/\sqrt{8})Kq/a^2$$
. Notez aussi que $E_y < 0$.

$$E_{y} = E_{1} + E_{2y} = -Kq/a^{2} + (Kq/2a^{2})\sin(\pi/4) = -(1 - 1/\sqrt{8})Kq/a^{2}. \text{ Notez aussi que } E_{y} < 0.$$
3) $\vec{E} = -(1 - 1/\sqrt{8})(Kq/a^{2})(\vec{i} + \vec{j}) \text{ et } ||\vec{E}|| = E = \sqrt{E_{x}^{2} + E_{y}^{2}} = (\sqrt{2} - 1/2)Kq/a^{2}$

4) a) Soit $\vec{p} = p\left(-\vec{i} + \vec{j}\right)$ où $p = 10^{-10}C.m.$ Les expressions vectorielles montrent que $\vec{E} \perp \vec{p}$ (voir schéma aussi)

$$\vec{\tau} = \vec{p} \wedge \vec{E} \Rightarrow \tau = ||\vec{p}||||\vec{E}||\sin\left(\vec{p},\vec{E}\right) = ||\vec{p}||.||\vec{E}|| = p\left(2 - 1/\sqrt{2}\right)Kq/a^2. \text{ Remarque } ||\vec{p}|| = \sqrt{2}p$$

La règle de la main droite montre que $\vec{\tau}$ est dans le sens de \vec{k} . Donc $\vec{\tau} = p \left(2 - 1/\sqrt{2}\right) Kq/a^2 \vec{k}$.

Vérifions par un calcul direct :

$$\vec{\tau} = \vec{p} \wedge \vec{E} = \left[p \left(-\vec{i} + \vec{j} \right) \right] \wedge \left[-\left(1 - 1/\sqrt{8} \right) \left(Kq/a^2 \right) \left(\vec{i} + \vec{j} \right) \right]$$

$$\vec{\tau} = -p \left(1 - 1/\sqrt{8} \right) \left(Kq/a^2 \right) \left[\left(-\vec{i} + \vec{j} \right) \wedge \left(\vec{i} + \vec{j} \right) \right] \text{ rappel} : \vec{i} \wedge \vec{i} = \vec{j} \wedge \vec{j} = \vec{0} \text{ et } \vec{i} \wedge \vec{j} = \vec{k}.$$

$$\vec{\tau} = -p \left(1 - 1/\sqrt{8} \right) \left(Kq/a^2 \right) \left[\left(-\vec{i} \wedge \vec{j} \right) + \left(\vec{j} \wedge \vec{i} \right) \right] = p \left(2 - 1/\sqrt{2} \right) \left(Kq/a^2 \right) \vec{k}$$

b) La position d'équilibre stable est celle où \vec{p} est parallèle à \vec{E} (et dans le même sens). Dans ce cas $\vec{p}_1 = -p\left(\vec{i}+\vec{j}\right)$ car $\left(1-1/\sqrt{8}\right)>0$.

c)
$$E_p = -\vec{p}.\vec{E} = 0$$
 et $E_{p1} = -\vec{p}_1.\vec{E} = -\sqrt{2}p||\vec{E}|| = -p(2-1/\sqrt{2})Kq/a^2$

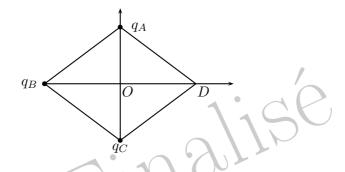
$$\Delta E_p = E_{p1} - E_p = E_{p1}$$

Autre façon :
$$\Delta E_p = E_{p1} - E_p = (\vec{p} - \vec{p_1}) \cdot \vec{E}$$

$$\Delta E_p = 2p\vec{j}.\vec{E} = 2pE_y = -(2 - 1/\sqrt{2}) Kpq/a^2$$

Exercice II.8

Deux charges ponctuelles q_A et q_C sont placées aux sommets A et C d'un triangle équilatéral ABC de côté 2a.

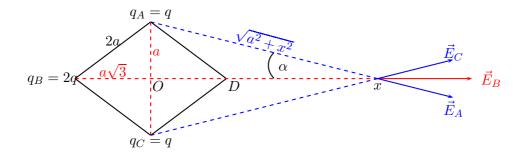


- 1. Une troisième charge ponctuelle q_B est placée au sommet B du triangle.
 - a) Calculer l'énergie potentielle de q_B au point B.
 - b) Calculer l'énergie interne du système constitué par ces 3 charges.
- 2. Déterminer le potentiel électrique créé par les 3 charges au point D symétrique du point B par rapport à AC.
- 3. Une quatrième charge ponctuelle Q est ramenée de l'infini au point D.
 - a) Déterminer l'énergie potentielle de cette charge au point D.
 - b) Calculer le travail de la force électrostatique durant le déplacement de Q. Comparer au résultat de (3-a) et Commenter.

$${\rm A.N.}: a = 2mm, \, q_A = \ q_C \ = q, \, q_B = 2q, \, q = 1 {\rm pC}, \, Q = 1 {\rm nC}, \, AB = BC = AD = CD = 2a.$$

Solution Exercice II.8

Les distances :
$$AB = BC = AC = 2a$$
 et $BO = DO = \sqrt{(2a)^2 - a^2} = \sqrt{3}a$.



1-a)
$$E_p(q_B) = q_B V(B)$$
 et $V(B) = (q_A + q_C) K/2a = Kq/a$. Donc $E_p(q_B) = 2Kq^2/a$.

1-b)
$$U = (q_A q_B + q_A q_C + q_B q_C) K/2a = 5q^2 K/2a$$

2)
$$V(D) = (q_A + q_C) K/2a + Kq_B/(2\sqrt{3}a) = .(Kq/a)(1 + 1/\sqrt{3})$$

3-a)
$$E_p(Q) = QV(D) = Q(q_A + q_C) K/2a + KQq_B/(2\sqrt{3}a) = (KqQ/a)(1 + 1/\sqrt{3})$$

3-b)
$$W_{\infty}^{D}(F) = \int_{\infty}^{x_{D}} \vec{F} . d\vec{l} = \int_{\infty}^{x_{D}} Q \vec{E} . d\vec{l} = -Q \int_{\infty}^{x_{D}} dV = -Q [V(D) - V(\infty)] = -E_{p}(D)$$

Comparaison avec (3-a):

Par définition, l'énergie potentielle d'une charge située en un point D est égale au travail de la résultante des forces électrostatiques pour un déplacement de cette charge du point D à un point de référence où le potentiel est nul (dans notre cas, c'est l'infini). Donc $E_p(D) = W_D^{\infty}(F) = -W_{\infty}^D(F)$

Autre Méthode de calcul de W (méthode directe) : en général $d\vec{l} = dx\vec{i} + dy\vec{j}$

Calculons le champ qui est parallèle à l'axe Ox. En additionnant les composantes sur Ox créées par chaque charge, on obtient:

$$E_x = E_{Ax} + E_{Cx} + E_{Bx}$$

$$E_x = Kq_A / (a^2 + x^2) \cos(\alpha) + Kq_C / (a^2 + x^2) \cos(\alpha) + Kq_B / (\sqrt{3}a + x)^2 \text{ avec } \cos(\alpha) = x / \sqrt{a^2 + x^2}$$

En additionnant les composantes sur Oy, on obtient :

$$E_y = E_{Ay} + E_{By} = 0$$

Donc

$$\vec{E} = \left[K (q_A + q_C) x / (a^2 + x^2)^{3/2} + K q_B / (\sqrt{3}a + x)^2 \right] \vec{i}$$

$$= K q \left[2x / (a^2 + x^2)^{3/2} + 2 / (\sqrt{3}a + x)^2 \right] \vec{i}$$

$$= Kq \left[2x/\left(a^2 + x^2\right)^{3/2} + 2/\left(\sqrt{3}a + x\right)^2 \right] \vec{i}$$

$$W_{\infty}^D(F) = KQq \int_{\infty}^{\sqrt{3}a} \left[2x/\left(a^2 + x^2\right)^{3/2} + 2/\left(\sqrt{3}a + x\right)^2 \right] dx. \text{ Posons } u = a^2 + x^2 \text{ et } v = \sqrt{3}a + x \text{ avec } du = 2xdx \text{ et } dv = dx. \text{ On aura alors :}$$

$$W_{\infty}^D(F) = KQq \left[\int_{\infty}^{4a^2} u^{-3/2} du + \int_{\infty}^{2\sqrt{3}a} 2v^{-2} dv \right] = -KQq/a \left(1 + 1/\sqrt{3} \right)$$

$$W_{\infty}^{D}(F) = KQq \left[\int_{\infty}^{4a^{2}} u^{-3/2} du + \int_{\infty}^{2\sqrt{3}a} 2v^{-2} dv \right] = -KQq/a \left(1 + 1/\sqrt{3} \right)$$

Exercice II.9

Choisir la bonne réponse :

1. soit une charge q située à l'intérieur d'une surface fermée S. Le flux Φ qui traverse cette surface :

- a) dépend de sa position.
- b) est nul.
- c) a pour expression $\Phi = q/\varepsilon_0$.
- d) a pour expression $\Phi = q/(4\pi\varepsilon_0)$.
- 2. Soit une charge q, située à l'extérieur d'une surface fermée S. Le flux Φ qui traverse cette surface est donné par :
 - a) $\Phi = q/\varepsilon_0$.
 - b) $\Phi = q/2\varepsilon_0$.
 - c) $\Phi = 0$.
- 3. Soit une sphère de rayon R, portant une charge volumique uniforme ρ . Le champ créé en un point M intérieur à la sphère (r < R):
 - a) se calcule à partir des charges contenues dans toute la sphère.
 - b) se calcule à partir des charges contenues dans une sphère de rayon r.

Solution Exercice II.9

Les bonnes réponses sont : 1-c, 2-c et 3-b.

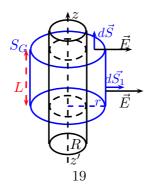
Exercice II.10

Une charge est uniformément répartie sur la surface d'un cylindre de longueur infinie et de rayon R. La densité de charge étant σ et l'axe de révolution étant z'Oz:

- 1. Calculer le champ électrique créé par ce cylindre.
- 2. En déduire le potentiel correspondant.

Solution Exercice II.10

1. Soit z'Oz l'axe de révolution du cylindre. A cause de la symétrie, le champ électrique est perpendiculaire à cet axe et son module est constant sur tout cylindre coaxial de rayon r (coordonnées polaires du plan normal à z'Oz). Par conséquent, la surface de Gauss S_G sera choisie comme un cylindre de rayon r et de longueur L. Le champ étant perpendiculaire au vecteurs surface des deux bases du cylindre de Gauss, le flux à travers S_G sera égal au flux à travers la surface latérale S_1 :



$$\Phi = \int_{S_G} \vec{E} . d\vec{S} = \int_{S_1} E . dS_1 = ES_1 = E (2\pi rL)$$

$$Q_{int} = \begin{cases} 0 & si \quad r < R \\ \sigma 2\pi RL & si \quad r > R \end{cases}$$

$$Q_{int} = \begin{cases} 0 & si \quad r < R \\ \sigma 2\pi RL & si \quad r > R \end{cases}$$
 Théorème de Gauss $\Phi = Q_{int}/\varepsilon_0 \Rightarrow E = \begin{cases} 0 & si \quad r < R \\ \sigma R/\varepsilon_0 r & si \quad r > R \end{cases}$

2. Le potentiel s'obtient par $dV=-\vec{E}.d\vec{l}$ avec $\vec{E}=E\vec{u}_r$ et $d\vec{l}=dr\vec{u}_r+...$ Donc dV=-Edr

pour
$$r < R$$
, on trouve $V = C_1$ pour $r > R$, on trouve $V = -\frac{\sigma R}{\varepsilon_0} \ln(r) + C_2$. Comme le potentiel vaut V_0 en $r = R$, on aura $C_1 = V_0$ et $-\frac{\sigma R}{\varepsilon_0} \ln(R) + C_2 = V_0$. D'où $V = \begin{cases} V_0 & \text{si} \quad r \leq R \\ -\frac{\sigma R}{\varepsilon_0} \ln(r/R) + V_0 & \text{si} \quad r \geq R \end{cases}$

Remarque: Le champ semble discontinu en R (E=0) juste à gauche et $E=\sigma/\varepsilon_0$ réalité, il varie d'une manière continue mais rapide de 0 à σ/ε_0 sur un distance Δr négligeable.

Exercice II.11

On considère qu'un atome est constitué d'un noyau de rayon R_n entouré d'un nuage électronique de densité de charge:

$$\rho(r) = A/r^6$$

où r représente la distance entre le centre du noyau et un point de l'espace.

- 1. A l'intérieur du noyau, le champ électrique est radial et son intensité varie linéairement en fonction de r. Interpréter cette hypothèse.
- 2. En utilisant le fait que l'atome soit électriquement neutre, déterminer la valeur de la constante A.
- 3. Établir à l'aide du théorème de Gauss, l'expression du champ électrique $\vec{E}(r)$:
 - a) juste à la surface du noyau $(r = R_n)$.
 - b) autour du noyau ($r > R_n$).
- 4. Représenter qualitativement la variation du champ électrique pour r variant de 0 à l'infini. En déduire la variation du potentiel V(r).

Solution Exercice II.11

- 1. Le champ et radial parce que la distribution des charges a une symétrie sphérique. Il possède la variation linéaire car cette distribution est supposée uniforme (voir exemple de la sphère uniformément chargée en volume, dans le cours polycopié de l'USTHB).
- 2. La charge du noyau est Ze (dans la sphère de rayon R_n).

Les électrons peuvent être dans tout l'espace mais à l'extérieur de la sphère de rayon R_n . En choisissant l'élément de volume $d\tau$ entre deux sphères concentriques de rayons r et r+dr, on pourra le calculer de trois façons équivalentes (la première est la plus simple):

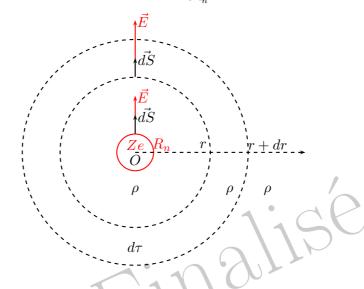
 $d\tau = S_r dr = 4\pi r^2 dr$ (surface de la sphère de rayon r multipliée par l'épaisseur dr)

 $d\tau = S_{r+dr}dr = 4\pi (r+dr)^2 dr = 4\pi r^2 dr + 8\pi r dr^2 + 4\pi dr^3 = 4\pi r^2 dr (dr^2 \text{ et } dr^3 \text{ sont négligeables car le})$ calcul infinitésimal s'arrête au premier ordre)

$$d\tau = V_{r+dr} - V_r = \frac{4}{3}\pi \left(r + dr\right)^3 - \frac{4}{3}\pi r^3 = \frac{4}{3}\pi dr^3 + 4\pi r dr^2 + 4\pi r^2 dr = 4\pi r^2 dr.$$

$$d\tau = V_{r+dr} - V_r = \frac{4}{3}\pi \left(r + dr\right)^3 - \frac{4}{3}\pi r^3 = \frac{4}{3}\pi dr^3 + 4\pi r dr^2 + 4\pi r^2 dr = 4\pi r^2 dr.$$
 Charge des électrons =
$$\int_{R_n}^{\infty} \rho\left(r\right) d\tau = 4\pi \int_{R_n}^{\infty} \frac{A \times r^2}{r^6} dr = 4\pi A \left[-\frac{1}{3r^3}\right]_{R_n}^{\infty} = \frac{4\pi A}{3R_n^3}$$

Atome neutre (charge des électrons = - charge du noyau) : $\frac{4\pi A}{3R_{o}^{3}} = -Ze$, Donc : $A = \frac{-3ZR_{o}^{3}e}{4\pi}$



3.a) Surface de Gauss en $R_n \Rightarrow \int_{S_G} \vec{E} . d\vec{S} = \int_{S_G} E dS = E \int_{S_G} dS = E 4\pi R_n^2$

La charge à l'intérieur de cette surface est toute la charge du noyau $Q_{int} = Ze$.

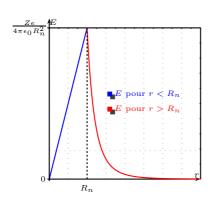
Théorème de Gauss : $E4\pi R_n^2 = Ze/\varepsilon_0$, alors : $E = \frac{1}{4\pi\varepsilon_0} \frac{Ze}{R_n^2}$

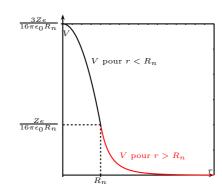
b) Surface de Gauss en r avec $r > R_n$: $\int_{S_G} \vec{E}.d\vec{S} = \int_{S_G} \vec{E}dS = E \int_{S_G} dS = E 4\pi r^2$

La charge à l'intérieur de la surface de Gauss se compose de la charge du noyau et de celle du nuage électronique situé entre R_n et r:

$$Q_{int} = Ze + \int_{R_n}^r \rho\left(r\right) 4\pi r^2 dr = Ze + A \left[-\frac{4\pi}{3r^3} \right]_{R_n}^r = Ze + A \frac{4\pi}{3R_n^3} - A \frac{4\pi}{3r^3} = -A \frac{4\pi}{3r^3} = Ze \frac{R_n^3}{r^3}$$
 Théorème de Gauss : $E4\pi r^2 = Ze \frac{R_n^3}{\varepsilon_0 r^3}$, alors $E = \frac{1}{4\pi\varepsilon_0} \frac{Ze R_n^3}{r^5}$

Remarque : pour $r < R_n$, on a $E = \alpha r$. Si l'on suppose la continuité du champ en R_n , cela nous permettra de déterminer α . On aura $\alpha R_n = \frac{1}{4\pi\varepsilon_0} \frac{Ze}{R_n^2}$, la solution est $\alpha = \frac{1}{4\pi} \frac{Z}{R_n^3 \varepsilon_0} e$. En résumé : $E = \begin{cases} \frac{ZeR_n^3}{4\pi\varepsilon_0} \frac{1}{r^5} & r \geq R_n \\ \frac{Ze}{4\pi\varepsilon_0 R_n^3} r & r \leq R_n \end{cases}$





4. Le potentiel s'obtient par $dV = -\vec{E}.d\vec{l}$ avec $\vec{E} = E\vec{u}_r$ et $d\vec{l} = dr\vec{u}_r + ...$ Donc dV = -Edr pour $r > R_n$ on trouve $V = -\int \frac{1}{4\pi\varepsilon_0} \frac{ZeR_n^3}{r^5} dr = \frac{Ze}{16\pi\varepsilon_0} \frac{R_n^3}{r^4} + C$. On choisit C = 0 car $V(\infty) = 0$. Donc $V\left(r\right) = \frac{Ze}{16\pi\varepsilon_0} \frac{R_n^3}{r^4}.$

Pour $r < R_n$ on trouve $V = -\int \frac{1}{4\pi\varepsilon_0} \frac{Zer}{R_n^3} dr = -\frac{1}{2} \frac{Ze}{4\pi\varepsilon_0} \frac{r^2}{R_n^3} + C_1$. A cause de la continuité du potentiel, les deux expressions de V (pour $r > R_n$ et $r < R_n$) doivent donner la même valeur en $r = R_n$. C'est-à-dire : $V(R_n) = \frac{Ze}{16\pi\varepsilon_0} \frac{R_n^3}{R_n^4} = -\frac{1}{2} \frac{Ze}{4\pi\varepsilon_0} \frac{R_n^2}{R_n^3} + C_1$ d'où $C_1 = \frac{3}{16\pi\varepsilon_0} \frac{Ze}{R_n}$. Ainsi, le potentiel est $V = \begin{cases} \frac{ZeR_n^3}{16\pi\varepsilon_0} \frac{1}{r^4} & r \geq R_n \\ \frac{1}{4\pi\varepsilon_0} \frac{Ze}{R_n} \left(\frac{3}{4} - \frac{r^2}{2R_n^2}\right) & r \leq R_n \end{cases}$

$$V = \begin{cases} \frac{ZeR_n^3}{16\pi\varepsilon_0} \frac{1}{r^4} & r \ge R_n\\ \frac{1}{4\pi\varepsilon_0} \frac{Ze}{R_n} \left(\frac{3}{4} - \frac{r^2}{2R_n^2}\right) & r \le R_n \end{cases}$$

