Chapitre 14: Développements limités

Dans tout le chapitre, *I* désigne un intervalle, et *a* un point de *I*.

I Généralités

A) Définitions

Soit $f: I \to \mathbb{R}$, $n \in \mathbb{N}$.

On dit que f admet un développement limité (DL) à l'ordre n en a lorsqu'il existe des réels $\lambda_0, \lambda_1, ..., \lambda_n$ et une fonction $\varepsilon : I \to \mathbb{R}$ qui tend vers 0 en a tels que :

$$\forall x \in I, f(x) = \lambda_0 + \lambda_1(x-a) + \lambda_2(x-a)^2 + \dots + \lambda_n(x-a)^n + (x-a)^n \mathcal{E}(x)$$

Autrement dit:

Lorsqu'il existe $\lambda_0, \lambda_1, ... \lambda_n \in \mathbb{R}$ tels que, au voisinage de a:

$$f(x) = \lambda_0 + \lambda_1(x-a) + \lambda_2(x-a)^2 + ... + \lambda_n(x-a)^n + o((x-a)^n)$$

Ou encore lorsqu'il existe λ_0 , λ_1 ,... $\lambda_n \in \mathbb{R}$ tels que :

$$f(a+u) = \lambda_0 + \lambda_1 u + \lambda_2 u^2 + ... + \lambda_n u^n + o(u^n)$$
 au voisinage de 0.

Ainsi, la notion de DL à l'ordre n en a pour $f: x \mapsto f(x)$ revient à la notion de DL à l'ordre n en 0 pour $f: u \mapsto f(a+u)$.

Exemples:

- L'égalité $\cos x = 1 \frac{x^2}{2} + o(x^2)$ constitue un DL à l'ordre 2 en 0 de la fonction cosinus.
- On veut un DL à l'ordre 2 en $\frac{\pi}{4}$ de cosinus :

$$\cos(\frac{\pi}{4} + x) = \frac{\sqrt{2}}{2}(\cos x - \sin x) = \frac{\sqrt{2}}{2}(1 - \frac{x^2}{2} + o(x^2) - (x + o(x^2)))$$
$$= \frac{\sqrt{2}}{2}(1 - x - \frac{x^2}{2} + o(x^2))$$

• DL à l'ordre 3 en 0 de la fonction $x \mapsto e^x + x^3 \sin x$:

$$e^{x} + x^{3} \sin x = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + o(x^{3})\right) + o(x^{3})$$
$$= 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + o(x^{3})$$

DL à l'ordre 5 en 0 de la fonction
$$f: x \mapsto \begin{cases} e^{-\frac{1}{x^6}} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$$

$$f(x) = 0 + o(x^5) = o(x^5)$$

(Vrai à n'importe quel ordre)

B) Théorème d'unicité des coefficients d'un DL

Théorème:

Soit $f:I\to\mathbb{R}$, $n\in\mathbb{N}$. Si f admet un DL à l'ordre n en a, alors les coefficients de

ce DL sont déterminés de manière unique, c'est-à-dire que si $\begin{cases} \lambda_0, \lambda_1, ... \lambda_n \\ \mu_0, \mu_1, ... \mu_n \end{cases}$ sont des réels

tels que, au voisinage de 0 :

$$f(a+u) = \lambda_0 + u\lambda_1 + ... + u^n\lambda_n + o(u^n)$$

et
$$f(a+u) = \mu_0 + u\mu_1 + ... + u^n \mu_n + o(u^n)$$
,

Alors
$$\forall i \in [0, n] \lambda_i = \mu_i$$

Démonstration :

Soient ε, η deux fonctions qui tendent vers 0 telles que :

$$\forall u \in J, \lambda_0 + \lambda_1 u + ... + \lambda_n u^n + u^n \mathcal{E}(u) = \mu_0 + \mu_1 u + ... + \mu_n u^n + u^n \eta(u)$$
 (1)

Où
$$J = \{u \in \mathbb{R}, a + u \in I\}$$

Alors, en prenant u = 0 dans (1), on obtient déjà $\lambda_0 = \mu_0$.

En reportant et en simplifiant par u (si non nul), on obtient :

$$\forall u \in J \setminus \{0\}, \lambda_1 + ... + \lambda_n u^{n-1} + u^{n-1} \mathcal{E}(u) = \mu_1 + ... + \mu_n u^{n-1} + u^{n-1} \eta(u)$$

En faisant tendre u vers 0, on obtient alors $\lambda_1 = \mu_1 \dots$

... on répète l'opération. Donc :

$$\forall u \in J \setminus \{0\}, \lambda_{n-1} + \lambda_n u + u \varepsilon(u) = \mu_{n-1} + \mu_n u + u \eta(u)$$

Donc
$$\lambda_{n-1} = \mu_{n-1}$$

Donc
$$\forall u \in J \setminus \{0\}, \lambda_n + \varepsilon(u) = \mu_n + \eta(u), \text{ donc } \lambda_n = \mu_n.$$

C) Troncature d'un DL

Proposition:

Soit $f: I \to \mathbb{R}$, $n \in \mathbb{N}$. Si f admet un DL à l'ordre n en a, alors, pour tout $p \in [0, n]$, f admet un DL à l'ordre p en a, obtenu par troncature.

En effet:

- Pour p = n, ok
- Sinon, p < n:

$$f(a+u) = \lambda_0 + \lambda_1 u + \dots + \lambda_p u^p + \underbrace{\lambda_{p+1} u^{p+1} + \dots + \lambda_n u^n + u^n \varepsilon(u)}_{=u^p (\lambda_{p+1} u + \dots + \lambda_n u^{n-p} + u^{n-p} \varepsilon(u))}_{=o(u^p)}$$

II DL et dérivation

Proposition

Soit $f: I \to \mathbb{R}$; f a un DL à l'ordre 0 en a si et seulement si f est continue en a, et dans ce cas ce DL est $f(a+u) = f(a) + \varepsilon(u)$, où ε tend vers 0 en 0.

En effet

- Si f est continue en a, alors $f(a+u) f(a) \xrightarrow[u \to 0]{} 0$, donc f(a+u) = f(a) + o(1).
- Si f admet un DL à l'ordre 0 en a, il s'écrit $f(a+u) = \lambda_0 + o(1)$, donc $f(a+u) \xrightarrow[a \to 0]{} \lambda_0$, donc f est continue en a, et $f(a) = \lambda_0$.

Proposition:

Soit $f: I \to \mathbb{R}$; f admet un DL à l'ordre 1 en a si et seulement si f est dérivable en a, et dans ce cas ce DL est f(a+u) = f(a) + uf'(a) + o(u) (1)

En effet:

- Si f admet un DL à l'ordre 1 en a, alors $f(a+u) = \lambda_0 + \lambda_1 u + u\varepsilon(u)$

Donc avec
$$u = 0$$
, $\lambda_0 = f(a)$, et pour $u \neq 0$, $\frac{f(a+u) - f(a)}{u} = \lambda_1 + \varepsilon(u) \xrightarrow{u \to 0} \lambda_1$.

- Si f est dérivable en a, on a vu que l'égalité (1) est vraie.

Attention : il est faux cependant qu'on ait un tel rapport pour les ordres supérieurs à 2. Exemple :

Exemple:
Soit
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \begin{cases} x^3 \sin \frac{1}{x} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$

Alors f admet un DL à l'ordre 2 en 0 :

$$f(x) = o(x^2)$$

Donc f admet un DL à l'ordre 1 en 0 qui s'écrit f(x) = o(x), donc f est dérivable en 0 et f'(0) = 0. Est-elle deux fois dérivable en 0 ?

Pour
$$x \neq 0$$
, $f'(x) = 3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}$

Donc
$$\frac{f'(x) - f'(0)}{x - 0} = \underbrace{3x \sin \frac{1}{x}}_{\text{pas de limite}} - \underbrace{\cos \frac{1}{x}}_{\text{pas de limite}}$$

Donc f n'est pas deux fois dérivable en 0.

Cependant:

Soit $n \in \mathbb{N}$.

Soit f de classe C^n sur I. Alors f admet en tout point a de I un DL à l'ordre n, qui est donné par la formule de Taylor–Young :

$$f(a+u) = f(a) + f'(a) \times u + \frac{f^{(2)}(a)}{2!}u^2 + \dots + \frac{f^{(n)}(a)}{n!}u^n + o(u^n)$$

Exercice:

Soit $f: \mathbb{R} \to \mathbb{R}$. Montrer que f est une bijection de \mathbb{R} dans \mathbb{R} dont la réciproque est de classe C^{∞} . Déterminer $f^{-1}(0), (f^{-1})'(0), (f^{-1})''(0), (f^{-1})'''(0)$.

Déjà f est bijective, de classe C^{∞} et de dérivée ne s'annulant pas. Donc f^{-1} est de classe C^{∞} .

Comme f^{-1} est de classe C^{∞} , elle admet un DL à l'ordre 3 en 0 :

$$f^{-1}(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + x^3 \varepsilon(x)$$
, et $\forall k \in [0;3] a_k = \frac{(f^{-1})^{(k)}(0)}{k!}$.

Pour tout réel x, on a :

$$f^{-1}(f(x)) = x = x + o(x^3) \text{ d'une part.}$$
et $f^{-1}(f(x)) = a_0 + a_1(x + x^3) + a_2(x + x^3)^2 + a_3(x + x^3)^3 + (x + x^3)^3 \mathcal{E}(x + x^3)$
Soit $f^{-1}(f(x)) = a_0 + a_1x + a_1x^3 + a_2x^2 + o(x^3) + a_3x^3 + o(x^3) + \underbrace{x^3(1 + x^2)^3 \mathcal{E}(x + x^3)}_{=o(x^3)}$

Donc
$$f^{-1}(f(x)) = a_0 + a_1 x + a_2 x^2 + (a_1 + a_3) x^3 + o(x^3)$$

Donc
$$a_0 = 0$$
 $a_1 = 1$ $a_2 = 0$ $a_3 = -1$

Donc
$$f^{-1}(0) = 0$$
 $(f^{-1})'(0) = 1$ $(f^{-1})''(0) = 0$ $(f^{-1})'''(0) = 3 \times (-1) = -6$

III « Opérations sur les DL »

A) « Retour à 0 »

On rappelle que $x \mapsto f(x)$ a un DL à l'ordre n en a si et seulement si $u \mapsto f(u+a)$ a un DL à l'ordre n en a.

Exemple:

DL à l'ordre 3 en 1 de exp.

Pour tout $u \in \mathbb{R}$:

$$e^{1+u} = e \times e^u = e + e \cdot u + e \cdot \frac{u^2}{2} + e \cdot \frac{u^3}{6} + e \cdot u^3 \varepsilon(u) \text{ où } \varepsilon(u) \xrightarrow[u \mapsto 0]{} 0.$$

B) Somme, produit par un réel

Proposition:

Soient $f, g: I \to \mathbb{R}$, $\lambda \in \mathbb{R}$

Si f et g admettent un DL à l'ordre n en a, alors λf et f+g aussi, et les parties principales des DL de λf et f+g sont obtenues en faisant respectivement le produit de la partie principale du DL de f par λ , et en faisant la somme des parties principales des DL de f et g.

Démonstration (sans introduire les notations):

$$f(a+x) = \underbrace{a_0 + a_1 x + \dots + a_n x^n}_{P(x)} + x^n \mathcal{E}(x)$$

$$g(a+x) = \underbrace{b_0 + b_1 x + \dots + b_n x^n}_{Q(x)} + x^n \eta(x)$$

Donc:

for
$$f(a+x)+g(a+x) = P(x)+Q(x)+\underbrace{x^n\eta(x)}_{=o(x^n)}+\underbrace{x^n\varepsilon(x)}_{=o(x^n)}.$$

Exemple:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$$

$$\cos x = 1 - \frac{x^2}{2} + o(x^3)$$

Donc
$$e^x + \cos x = 2 + x + \frac{x^3}{6} + o(x^3)$$

Et
$$e^x + 2\cos x = 3 + x - \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$$

C) Produit de deux DL

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)$$

$$\sin x = x - \frac{x^3}{6} + o(x^3)$$
Donc:
$$\sin x \sqrt{1+x} = (x - \frac{x^3}{6} + o(x^3))(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3))$$

$$= x - \frac{x^3}{6} + \frac{1}{2}x^2 - \frac{1}{8}x^3 + o(x^3)$$

$$= x + \frac{x^2}{2} - \frac{7x^3}{24} + o(x^3)$$

Proposition:

Si deux fonctions f et g admettent un DL à l'ordre n en a, alors $f \times g$ admet un DL à l'ordre n en a, obtenu en ne conservant que les termes de degré $\leq n$ dans le produit des parties principales (polynomiales) des DL de f et g.

Démonstration (sans introduire les notations) :

$$f(a+x) = \underbrace{a_0 + a_1 x + \dots + a_n x^n}_{P(x)} + x^n \mathcal{E}(x)$$
$$g(a+x) = \underbrace{b_0 + b_1 x + \dots + b_n x^n}_{Q(x)} + x^n \eta(x)$$

Donc:

$$f(a+x)g(a+x) = P(x)Q(x) + \underbrace{P(x)x^n\eta(x)}_{o(x^n)} + \underbrace{Q(x)x^n\varepsilon(x)}_{o(x^n)} + \underbrace{x^nx^n\varepsilon(x)\eta(x)}_{=o(x^{2n})=o(x^n)}.$$

D) Composition de DL

Exemple:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + x^n \mathcal{E}(x)$$
 où $\mathcal{E}(x) \xrightarrow[x \mapsto 0]{} 0$

Donc
$$e^x = 1 - x + \frac{x^2}{2!} + ... + (-1)^n \frac{x^n}{n!} + x^n \underbrace{(-1)^n \varepsilon(x)}_{\to 0}$$

On a donc obtenu le DL à l'ordre n en 0 de $x \mapsto e^{-x}$.

Théorème:

Soient $f: I \to \mathbb{R}$, $a \in I$

Soit $g: J \to \mathbb{R}$ où J est tel que $f(I) \subset J$

Si f a un DL à l'ordre n en a, et g un DL à l'ordre n en f(a), alors $g \circ f$ a un DL à l'ordre n en a, donné dans la démonstration.

Démonstration :

$$f(a+x) = \underbrace{\lambda_0}_{f(a)} + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n + x^n \mathcal{E}(x) \text{ où } \mathcal{E}(x) \xrightarrow[x \mapsto 0]{} 0$$

$$g(\lambda_0 + u) = \mu_0 + \mu_1 u + \mu_2 u^2 + \dots + \mu_n u^n + u^n \eta(u) \text{ où } \eta(u) \xrightarrow[x \mapsto 0]{} 0$$

$$g(f(a+x)) = g(\lambda_0 + \underbrace{\lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n + x^n \mathcal{E}(x)}_{u})$$

$$= \mu_0 + \mu_1(\lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n + x^n \mathcal{E}(x))$$

$$+ \mu_2(\lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n + x^n \mathcal{E}(x))^2 + ...$$

$$+ \mu_n(\lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n + x^n \mathcal{E}(x))^n$$

$$+ \underbrace{(\lambda_1 x + \lambda_2 x^2 + ... + \lambda_n x^n + x^n \mathcal{E}(x))^n}_{x^n \times \text{termes qui tendent vers } \lambda_1^n \text{ quand } x \mapsto 0} \xrightarrow{\to 0}$$

$$= o(x^n)$$

On a donc la somme d'un polynôme en x de degré $\leq n$ et d'une fonction négligeable devant x^n .

Exemples:

• DL à l'ordre 3 en 0 de $x \mapsto \sqrt{\cos x}$:

 $=1-\frac{x^2}{4}+o(x^3)$

$$\cos x = 1 - \frac{x^2}{2} + o(x^3)$$

$$\sqrt{\cos x} = \sqrt{1 - \frac{x^2}{2} + o(x^3)} = \sqrt{1 + u} \text{ avec } u = -\frac{x^2}{2} + o(x^3).$$

$$u \xrightarrow[x \to 0]{} 0. \text{ Donc :}$$

$$\sqrt{1 + u} = 1 + \frac{u}{2} - \frac{u^2}{8} + \frac{u^3}{16} + u^3 \eta(u)$$

$$\text{Donc :}$$

$$\sqrt{\cos x} = 1 - \frac{x^2}{4} + o(x^3) - \frac{1}{8} (-\frac{x^2}{2} + o(x^3))^2 + \frac{1}{16} (-\frac{x^2}{2} + o(x^3))^3 + (-\frac{x^2}{2} + o(x^3))^3 \underbrace{\eta(-\frac{x^2}{2} + o(x^3))}_{=o(x^6)}$$

On remarque qu'on pouvait se contenter de $\sqrt{1+u} = 1 + \frac{u}{2} - \frac{u^2}{8} + u^2 \eta(u)$

• DL à l'ordre 3 en 0 de $x \mapsto \sin^3 x$: $\sin x = x - \frac{x^3}{6} + x^3 \mathcal{E}(x)$ où $\mathcal{E}(x) \xrightarrow[x \to 0]{} 0$. $(\sin x)^3 = x^3 (1 - \frac{x^2}{6} + x^2 \mathcal{E}(x))^3 = x^3 + x^3 \eta(x)$ où $\eta(u) \xrightarrow[u \to 0]{} 0$

On pouvait là aussi se contenter de $\sin x = x + o(x^2)$

• DL à l'ordre 4 de
$$x \mapsto e^{\cos x}$$

 $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4)$
 $e^{\cos x} = \exp(1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4)) = e \exp(-\frac{x^2}{2} + \frac{x^4}{4!} + o(x^4))$
Or, $e^u = 1 + u + \frac{u^2}{2!} + o(u^2)$
Donc $\exp(-\frac{x^2}{2} + \frac{x^4}{4!} + o(x^4)) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^4}{8} + o(x^4)$
Donc $e^{\cos x} = e - e \frac{x^2}{2} + e \frac{x^4}{6} + o(x^4)$

Proposition:

Soit $f: I \to \mathbb{R}$. Si $f(a) \neq 0$, et si f a un DL à l'ordre n en a, alors $\frac{1}{f}$ aussi.

Démonstration :

$$f(a+x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n + x^n \varepsilon(x)$$
, où $\varepsilon(x) \xrightarrow[x \to 0]{} 0$ et $\lambda_0 \neq 0$.

Comme f a un DL à l'ordre n en a, f a un DL à l'ordre 0 en a, donc f est continue en a, donc, comme $f(a) \neq 0$, f est strictement du signe de f(a) au voisinage de a, donc $\frac{1}{f}$ est bien définie au voisinage de a.

$$\frac{1}{f(a+x)} = \frac{1}{\lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n + x^n \varepsilon(x)}$$
$$= \frac{1}{\lambda_0} \times \frac{1}{1 + \mu_1 x + \mu_2 x^2 + \dots + \mu_n x^n + x^n \eta(x)}$$

Où $\forall i \in [1, n], \mu_i = \frac{\lambda_i}{\lambda_0}$, et $\eta = \frac{\varepsilon}{\lambda_0}$

On note $g(x) = \mu_1 x + \mu_2 x^2 + ... + \mu_n x^n + x^n \eta(x)$

Alors g a un DL à l'ordre n en 0, et g(0) = 0

 $u \mapsto \frac{1}{1+u}$ a un DL à l'ordre n en 0, donc, par composition, $x \mapsto \frac{1}{1+g(x)}$ a un DL

à l'ordre n en 0, d'où l'existence.

Rappel:

$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + \dots + (-1)^n u^n + o(u^n)$$

Exemples:

• DL à l'ordre 4 en 0 de $x \mapsto \frac{1}{1 + \cos x}$:

$$1 + \cos x = 2 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4)$$

$$\frac{1}{1+\cos x} = \frac{1}{2 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^4)} = \frac{1}{2} \left(\frac{1}{1 - \frac{x^2}{4} + \frac{x^4}{48} + o(x^4)} \right)$$

Or,
$$\frac{1}{1+u} = 1 - u + u^2 + o(u^2)$$

Si on prend $u = -\frac{x^2}{4} + \frac{x^4}{48} + o(x^4)$, on aura:

$$u^2 = \frac{x^4}{16} + o(x^4)$$

Et
$$o(u^2) = o(x^4)$$
 car $u^2 \sim \frac{x^4}{16}$

Donc
$$\frac{1}{1+\cos x} = \frac{1}{2} \left(1 - \left(-\frac{x^2}{4} + \frac{x^4}{48} + o(x^4) \right) + \left(\frac{x^2}{16} + o(x^4) \right) + o(x^4) \right)$$
$$= \frac{1}{2} + \frac{x^2}{8} + \frac{x^4}{48} + o(x^4)$$

• DL à l'ordre 3 en
$$\frac{\pi}{6}$$
 de $x \mapsto \frac{1}{\sin x}$:

$$\sin(\frac{\pi}{6} + u) = \sin u \times \frac{\sqrt{3}}{2} + \cos u \times \frac{1}{2}$$

$$\frac{1}{\sin(\frac{\pi}{6} + u)} = \frac{2}{\sqrt{3}\sin u + \cos u} = \frac{2}{\sqrt{3}(u - \frac{u^3}{6} + o(u^3)) + (1 - \frac{u^2}{2} + o(u^3))}$$

$$= \frac{2}{1 + \sqrt{3}u - \frac{1}{2}u^2 - \frac{\sqrt{3}}{6}u^3 + o(u^3)}$$
Or, $\frac{1}{1 + v} = 1 - v + v^2 - v^3 + o(v^3)$
Si on prend $v = \sqrt{3}u - \frac{1}{2}u^2 - \frac{\sqrt{3}}{6}u^3 + o(u^3)$, on a:
$$v^2 = u^2(\sqrt{3} - \frac{1}{2}u - \frac{\sqrt{3}}{6}u^2 + o(u^2))^2 = u^2(3 - \sqrt{3}u + o(u)) = 3u^2 - \sqrt{3}u^3 + o(u^3)$$

$$v^3 = 3\sqrt{3}u^3 + o(u^3)$$

$$o(v^3) = o(u^3) \text{ car } v^3 \sim 3\sqrt{3}u^3$$
Donc $\frac{1}{\sin(\frac{\pi}{6} + u)} = 2(1 - \sqrt{3}u + \frac{7}{2}u^2 - \frac{23\sqrt{3}}{6}u^3 + o(u^3))$

IV Primitive, dérivée

A) Primitive

Théorème :

Soit $f: I \to \mathbb{R}$, admettant un DL à l'ordre n en a.

Si f admet une primitive F sur I, alors F admet un DL à l'ordre n+1 en a, obtenu de la manière suivante :

Si
$$f(a+x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n + o(x^n)$$
,

Alors
$$F(a+x) = F(a) + \lambda_0 x + \frac{\lambda_1}{2} x^2 + \frac{\lambda_2}{3} x^3 + \dots + \frac{\lambda_n}{n+1} x^{n+1} + o(x^{n+1})$$

Démonstration :

$$f(a+x) = \underbrace{\lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n}_{P(x)} + x^n \mathcal{E}(x) \text{ où } \mathcal{E}(x) \xrightarrow[x \to 0]{} 0.$$

Posons
$$Q(x) = F(a) + \lambda_0 x + \frac{\lambda_1}{2} x^2 + ... + \frac{\lambda_n}{n+1} x^{n+1}$$

Ainsi, Q' = P.

On doit donc montrer que $F(a+x) - Q(x) = o(x^{n+1})$.

Notons $J = \{x \in \mathbb{R}, a + x \in I\}$

Soit $x \in J \setminus \{0\}$.

D'après le théorème des accroissements finis appliqué à $t\mapsto F(a+t)-Q(t)$ entre 0 et x, il existe $c_x\in]0,x[$ tel que :

$$(F(a+x)-Q(x))-\underbrace{(F(a)-Q(0))}_{=0}=\underbrace{(f(a+c_x)-P(c_x))}_{(c_y)^n\varepsilon(c_y)}\times x$$

Ainsi, pour $x \neq 0$

Donc
$$\frac{F(a+x)-Q(x)}{x^{n+1}} \xrightarrow{x \to 0} 0$$
, donc $F(a+x)-Q(x) = o(x^{n+1})$.

B) Dérivation

Théorème:

Soit $f: I \to \mathbb{R}$. Si f est dérivable et admet un DL à l'ordre n en a, et si f' admet un DL à l'ordre n-1 en a, alors ce DL est obtenu ainsi :

Si
$$f(a+x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n + o(x^n)$$
,

Alors
$$f'(a+x) = \lambda_1 + 2\lambda_2 x + ... + n\lambda_n x^{n-1} + o(x^{n-1})$$

Démonstration :

Il suffit d'appliquer à f' le théorème précédent.

Attention:

L'hypothèse que f' admet un DL est indispensable :

$$f(x) = \begin{cases} x^3 \sin \frac{1}{x} \sin x \neq 0\\ 0 \text{ sinon} \end{cases}$$

Alors f admet un DL à l'ordre 2 en 0, à savoir $f(x) = 0 + o(x^2)$

(Puisque
$$\frac{f(x)}{x^2} = x \sin \frac{1}{x} \xrightarrow[\substack{x \to 0 \\ y \neq 0}]{x \to 0} 0$$
)

Mais f' n'admet pas de DL à l'ordre 1 en 0 puisque f n'est pas deux fois dérivable en 0, donc f' n'est pas dérivable en 0, donc n'admet pas de DL à l'ordre 1 en 0.

V Parité

Proposition:

Si $f: I \to \mathbb{R}$ admet un DL à l'ordre n en 0, disons

$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + o(x^n)$$

Alors:

- Si f est paire, alors les a_{2i+1} sont nuls
- Si f est impaire, alors les a_{2i} sont nuls.

Démonstration :

Ici, I est un intervalle contenant 0 et centré en 0. On a :

$$f(x) = a_0 + a_1 x + ... + a_n x^n + o(x^n)$$

$$f(-x) = a_0 - a_1 x + \dots + (-1)^n a_n x^n + o(x^n)$$

Si f est paire, on a alors f(x) = f(-x), et donc $a_1 = -a_1,...$

Si f est impaire, on a alors f(x) = -f(-x), et donc $a_0 = -a_0$,...

VI DL à connaître

Toutes les fonctions considérées sont de classe C^{∞} au voisinage de 0, elles ont donc un DL à n'importe quel ordre en 0:

•
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

 $e^{-x} = 1 - x + \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{n}}{n!} + o(x^{n})$
 $\operatorname{ch}(x) = \frac{e^{x} + e^{-x}}{2} = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2p}}{(2p)!} + \begin{cases} o(x^{2p}) \\ o(x^{2p+1}) \end{cases}$
 $\operatorname{sh}(x) = \frac{e^{x} - e^{-x}}{2} = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2p+1}}{(2p+1)!} + \begin{cases} o(x^{2p+1}) \\ o(x^{2p+2}) \end{cases}$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + \begin{cases} o(x^{2p}) \\ o(x^{2p+1}) \end{cases}$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + \begin{cases} o(x^{2p+1}) \\ o(x^{2p+2}) \end{cases}$$

•
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + ... + (-1)^n x^n + o(x^n)$$

On en tire plusieurs résultats :

- Déjà,
$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + ... + (-1)^n x^{2n} + o(x^{2n})$$

D'où, par intégration, Arctan(x) =
$$0 + x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + ... + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

- Mais aussi, par intégration,
$$\ln(1+x) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

- Ou encore
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + ... + x^n + o(x^n)$$

D'où
$$\frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + ... + x^{2n} + o(x^{2n})$$

Et, par intégration : Argth(x) =
$$0 + x + \frac{x^3}{3} + \frac{x^5}{5} + ... + \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

(Qu'on pouvait aussi retrouver en considérant que Argth(x) = $\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$)

•
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \dots + a_n x^n + o(x^n)$$

Avec

$$a_{n} = \frac{\frac{1}{2} \times (\frac{1}{2} - 1) \times (\frac{1}{2} - 2) \times ... \times (\frac{1}{2} - n + 1)}{n!} = \frac{1}{2^{n} n!} \times (-1) \times (-3) \times ... \times (-(2n - 3))$$

$$= \frac{(-1)^{n}}{2^{n} n!} \times \frac{1 \times 2 \times 3 \times ... \times (2n - 3) \times (2n - 1) \times 2n}{2 \times 4 \times ... \times (2n - 2) \times 2n \times (2n - 1)} = \frac{(-1)^{n}}{2^{n} n!} \times \frac{(2n)!}{2^{n} n! (2n - 1)} = \frac{(-1)^{n} (2n)!}{2^{2n} (n!)^{2} (2n - 1)}$$

•
$$\frac{1}{\sqrt{1+x}} = (1+x)^{-1/2} = 1 - \frac{x}{2} + \frac{3x^2}{8} + \dots + b_n x^n + o(x^n)$$

Avec

$$a_n = \frac{(-\frac{1}{2}) \times (-\frac{1}{2} - 1) \times (-\frac{1}{2} - 2) \times \dots \times (-\frac{1}{2} - n + 1)}{n!} = \dots = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2}$$

•
$$\frac{1}{\sqrt{1+x^2}} = 1 - \frac{x^2}{2} + \frac{3x^4}{8} + \dots + b_n x^{2n} + o(x^{2n})$$

- Donc par intégration : Argsh(x) =
$$0 + x - \frac{x^3}{6} + \frac{3x^5}{5 \times 8} + ... + \frac{b_n}{2n+1} x^{2n+1} + o(x^{2n+1})$$

- Ou
$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + ... + |b_n| x^{2n} + o(x^{2n})$$

D'où, par intégration : Arcsin(x) =
$$0 + x + \frac{x^3}{6} + \frac{3x^5}{5 \times 8} + ... + \frac{|b_n|}{2n+1} x^{2n+1} + o(x^{2n+1})$$

Et Arccos(x) =
$$\frac{\pi}{2}$$
 - Arcsin(x) = $\frac{\pi}{2}$ - $x - \frac{x^3}{6} - \frac{3x^5}{5 \times 8} - \dots - \frac{|b_n|}{2n+1} x^{2n+1} + o(x^{2n+1})$

• tan(x): deux méthodes

$$-\tan x = \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^5)} = \dots = x + \frac{x^3}{3} + \frac{2x^5}{15} + \begin{cases} o(x^5) \\ o(x^6) \end{cases}$$

-
$$\tan x = x + ax^3 + bx^5 + o(x^5)$$

La dérivée de tangente est de classe C^{∞} au voisinage de 0, donc admet un DL à l'ordre 4 en 0, et :

$$\tan' x = 1 + 3ax^2 + 5bx^4 + o(x^4)$$

Or,
$$\tan^2 x = 1 + \tan^2 x = 1 + (x + ax^3 + bx^5 + o(x^5))^2 = 1 + x^2 + 2ax^4 + o(x^4)$$

Donc, par unicité des coefficients d'un DL:

$$3a = 1$$
; $5b = 2a$. Donc $a = \frac{1}{3}$ et $b = \frac{2}{15}$

VII Applications

A) Recherche de limites, d'équivalents (exemples)

• $\lim_{x \to 1} \frac{\ln x}{x-1}$? On peut réutiliser les méthodes de Terminale (c'est ln'(1)), ou :

Au voisinage de 0, on a :

$$\ln(1+u) = u - \frac{u^2}{2} + o(u^2)$$

Donc, pour $u \neq 0$:

$$\frac{\ln(1+u)}{u} = 1 - \frac{u}{2} + o(u), \text{ d'où } \lim_{u \to 0} \frac{\ln(1+u)}{u} = 1.$$

Donc la fonction $f:]0,+\infty[\setminus\{1\} \to \mathbb{R}]$ est prolongeable par continuité en 1 par la $x\mapsto \frac{\ln x}{x-1}$

valeur 1, et la fonction obtenue admet un DL à l'ordre 1 en 1 :

$$f(1+u) = 1 - \frac{u}{2} + o(u)$$
. Donc f est dérivable en 1, et $f'(1) = -\frac{1}{2}$.

• Soit f définie sur $I \setminus \{a\}$, où a est un élément de I.

S'il existe $\lambda_0, \lambda_1, ..., \lambda_n \in \mathbb{R}$ tels que, au voisinage de 0 privé de 0 :

 $f(a+u) = \lambda_0 + \lambda_1 u + \lambda_2 u^2 + ... + \lambda_n u^n + o(u^n)$, alors f est prolongeable par continuité en a (par $f(a) = \lambda_0$), et la fonction obtenue admet un DL à l'ordre n en a.

$$\bullet \quad \lim_{x \mapsto 0^+} \left(\frac{1}{\sin x} - \frac{1}{\tan x} \right) ?$$

Au voisinage de 0, on a :

$$\frac{1}{\sin x} - \frac{1}{\tan x} = \frac{\tan x - \sin x}{\sin x \times \tan x} = \frac{\left(x + \frac{x^3}{3} + o(x^3)\right) - \left(x - \frac{x^3}{6} + o(x^3)\right)}{x^2 + o(x^2)} = \frac{\frac{x^3}{2} + o(x^3)}{x^2 + o(x^2)} \sim \frac{x}{2}$$

Donc
$$\frac{1}{\sin x} - \frac{1}{\tan x} \xrightarrow{x \to 0} 0$$

• Le premier terme non nul d'un DL donne un équivalent :

Si
$$f(x) = \lambda_p x^p + \underbrace{\lambda_{p+1} x^{p+1} + ... + \lambda_n u^n + o(u^n)}_{o(x^p)}$$
 (avec $\lambda_p \neq 0$), alors $f(x) \sim \lambda_p x^p$.

• Donner un équivalent en $+\infty$ de $e^{1/x^2} - \cos\left(\frac{1}{x^2}\right) - \sin\left(\frac{1}{x^2}\right)$.

Au voisinage de 0, on a :

$$e^{u} = 1 + u + \frac{u^{2}}{2} + o(u^{2})$$

$$\cos u = 1 - \frac{u^2}{2} + o(u^2)$$

$$\sin u = u + o(u^2)$$

Donc
$$e^{u} - \cos u - \sin u = u^{2} + o(u^{2})$$

D'où
$$e^{1/x^2} - \cos\left(\frac{1}{x^2}\right) - \sin\left(\frac{1}{x^2}\right) = \frac{1}{x^4} + o\left(\frac{1}{x^4}\right) \sim \frac{1}{x^4}$$

B) Dérivée, tangente, position d'une courbe par rapport à une tangente

On suppose que f admet un DL à l'ordre au moins 2 en a:

$$f(a+u) = \lambda_0 + \lambda_1 u + \lambda_2 u^2 + ... + \lambda_n u^n + o(u^n)$$
, où $n \ge 2$

De ce DL, on tire:

$$f(a) = \lambda_0$$
 ; $f'(a) = \lambda_1$

D'où l'équation de la tangente à C au point A d'abscisse $a: y = \lambda_0 + \lambda_1(x-a)$

La position de C par rapport à la tangente T est donnée par le signe de :

$$\underbrace{f(x) - (\lambda_0 + (x-a)\lambda_1)}_{\Delta(x)} = \lambda_2 (x-a)^2 + \dots + o((x-a)^n)$$

Si $\lambda_2 \neq 0$:

$$\Delta(a+u) = u^2(\lambda_2 + \varepsilon(u))$$

Donc $\Delta(x)$ est du signe de λ_2 au voisinage de a.

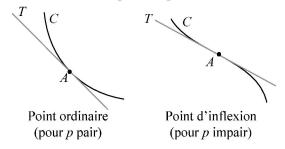
Si $\lambda_2 = 0$, et si on suppose de plus qu'on peut faire un DL jusqu'à un ordre p suffisant de sorte que le coefficient de u^p ne soit pas nul :

$$\Delta(a+u) = \lambda_p u^p + o(u^p)$$
 où $p > 2$ et $\lambda_p \neq 0$

Soit
$$\Delta(a+u) = u^p (\lambda_p + \varepsilon(u))$$

Donc $\Delta(a+u)$ est du signe de λ_p pour u>0 au voisinage de a et du signe de $(-1)^p \lambda_p$ pour u<0 toujours au voisinage de a.

On a donc, selon la parité de p:



C) Etude locale en $+\infty$.

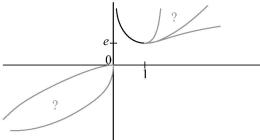
Exemple:

Etude de la fonction $f: x \mapsto xe^{1/x}$

Déjà f est définie sur \mathbb{R}^* , et elle y est de classe C^{∞}

Et
$$\forall x \in \mathbb{R}^*, f'(x) = e^{1/x} - \frac{1}{x}e^{1/x} = e^{1/x} \left(\frac{x-1}{x}\right)$$

<u>x</u>	-∞	0	1	+∞
f'(x)	+	-		+
f(x)		→ 0 +∞	\sum_e_	→ +∞
		1		



Etude en $+\infty$ ou $-\infty$:

Au voisinage de 0 :

$$e^{u} = 1 + u + \frac{u^{2}}{2} + u^{2} \varepsilon(u)$$
 où $\varepsilon(u) \xrightarrow{u \to 0} 0$

Donc
$$e^{1/x} = 1 + \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{x^2} \varepsilon \left(\frac{1}{x}\right)$$
 où $\varepsilon \left(\frac{1}{x}\right) \xrightarrow{x \mapsto \pm \infty} 0$

Donc
$$f(x) = x + 1 + \frac{1}{2x} + \frac{1}{x}\varepsilon\left(\frac{1}{x}\right)$$

Ainsi, l'écart entre la courbe C et la droite D d'équation D: y = x+1 est $\frac{1}{2x} + \frac{1}{x} \mathcal{E}\left(\frac{1}{x}\right)$ qui tend vers 0.

La droite D est donc asymptote à C en $\pm \infty$

De plus,
$$f(x) - (x+1) = \frac{1}{x} \left(\frac{1}{2} + \varepsilon \left(\frac{1}{x} \right) \right)$$

>oau voisinage de $t = \infty$

Donc C est au dessus de D en $+\infty$ et en dessous en $-\infty$.

Etude à gauche en 0 :

On pose f(0) = 0

Ainsi, f est continue à gauche en 0.

Pour
$$x < 0$$
, $\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = e^{1/x} \xrightarrow{x \to 0^{-}} 0$.

Donc f est dérivable à gauche en 0, et $f'_{g}(0) = 0$