

Analyse 1

Chapitre 01

Le corps des nombres Réels

1. Nombres Réels:

1.1 - Construction de l'ensemble des nombres réels :

1.1.1 Definition

Une partie non vide $A \subset \mathbb{Q}$ est dite section dans \mathbb{Q} si elle vérifie la propriété suivante :

 $\forall x \in A , \forall x' \in \mathbb{Q} : x' < x \Rightarrow x' \in A$

Une section est dite ouverte si:

 $\forall x \in A$, $\exists x' \in A : x' > x$

1.2 Théorème

Soit A une section ouverte alors:

 $\forall \ \epsilon \in \mathbb{Q}^*$, $\exists \ x \in A \ \exists \ x' \notin A : x' - x < \epsilon$

1.3 Definition

Toute section ouverte sera appelé nombre réel . L'ensemble des nombres réels sera noté $\mathbb R$.

1.4 Valeur absolue

Soit $x \in \mathbb{R}$ on appelle valeur absolue de x notée |x| le réel positif définie par :

2

$$|x| = \begin{cases} x & \sin x \ge 0 \\ -x & \sin x \le 0 \end{cases}$$

1.5 Propriétés

- $|a| = 0 \Leftrightarrow a = 0$
- $|a b| = |a| \times |b|$

- Si $b \neq 0$, |ab| = |a| |b|
- $|x/y| = |x|/|y|(|y| \neq 0)$
- $|a+b| \le |a| + |b|$ (inégalité triangulaire)
- | a b | ≥ | | a | | b | | (deuxième inégalité triangulaire, découle de la première)

Dans ce qui suit A est un sous ensemble de \mathbb{R}

2 Partie bornée

Soit A un sous ensemble de \mathbb{R} et m , M $\in \mathbb{R}$

- M majore A pour tout x ∈ A : x ≤ M (M est le plus grand élément de A) N.B Si M appartient à A alors c'est un maximum
- m minore A pour tout x ∈ A : x ≥ m (m est le plus petit élément de A) N.B Si m appartient à A alors c'est un minimum

2.2 Définition

- On dit que A est majoré s'il existe un réel M tel que M majore A.
- On dit que A est minoré s'il existe un réel m tel que m minore A.
- Si A est majoré et minoré, on dit qu'il est borné.

2.3 Borne supérieure et borne inférieure

- On dit que s est la borne supérieure de A, notée **Sup(A)** si s est le plus petit majorant de A.
- On dit que t est la borne supérieure de A, notée **Inf(A)** si t est le plus grand minorant de A.

2.3 Théorème

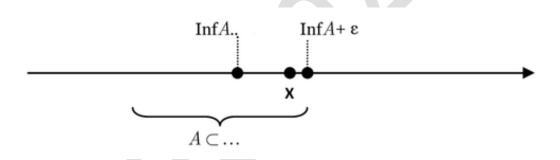
- Si A est un sous ensemble de $\mathbb R$ non vide et majoré, alors A admet une borne supérieure .
- Si A est un sous ensemble de \mathbb{R} non vide et minoré, alors A admet une borne inférieure .

2.4 Caractérisation des bornes supérieure et inférieure

• $\forall \ \epsilon > 0 \ \exists \ x \in A \ / \ Sup(A) - \epsilon \le \ x \le Sup(A)$

 $\sup_{A\subset \dots} A = \sup_{X} A$

• $\forall \ \epsilon > 0 \ \exists \ x \in A \ / \ Inf(A) \le \ x \le Inf(A) + \epsilon$



3. Partie entière

3.1 Définition

si x est un réel , il existe un unique entier $m \in \mathbb{Z}$ tel que $m \le x < m+1$ On l'appelle la partie entière de x , et on la note [x] ou E[x].

N.B E[x] est le plus grand entier relatif qui est inférieur ou égal à x.

ex : E[3.2]=3 car
$$3 \le 3.2 < 4$$

E[4]=4

3.2 Représentation graphique de la fonction « partie entière »

